TRANSITION METAL CHEMISTRY
 VI. CALCULATION OF FORCE CONSTANTS IN THE CO STRETCHING REGION OF cis-DISUBSTITUTED GROUP VI METAL CARBONYLS AND IRON CARBONYL COMPLEXES WITH $C_{2 v}$ SYMMETRY

F. T. DELbEKE, E. G. CLAEYS and G. P. VAN DER KELEN
Laboratory for General and Inorganic Chemistry, B; University of Ghent, Krijgslaan 105, 9000 Ghent (Belgium)

(Received April 18th, 1970)

SUMMARY
For complexes of the type cis $-\mathrm{L}_{2} \mathrm{M}(\mathrm{CO})_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Cr} ; \mathrm{L}=$ a phosphine, arsine or amine), $(\mathrm{RHg})_{2} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{R}=\mathrm{Me}, \mathrm{Bu})$ and $\left(\mathrm{R}_{3} \mathrm{M}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{M}=\mathrm{Pb}, \mathrm{Sn}, \mathrm{Si}$ or Ge) all the CO stretching force constants are calculated using a rigorous algebraic procedure based on the Cotton and Kraihanzel force field.

SYMMETRY AND CALCULATION OF FORCE CONSTANTS

In recent papers ${ }^{1-3}$ a new method for the calculation of all the CO stretching force constants of substituted metal carbonyls was developed. The compounds treated in this work belong to the $C_{2 v}$ (or local $C_{2 v}$) symmetry class, and therefore show four IR- and Raman-active stretching frequencies in the $C O$ region ($2 A_{1}+B_{1}+B_{2}$). The calculations for the force constants in the CO stretching region for complexes of this type as well as for other substituted metal carbonyls have been carried out previously using the $\mathrm{C}-\mathrm{K}$ approximation method ${ }^{4}$. As reported earlier ${ }^{1-3}$, this method could be improved using some interaction force constant relations which were found using orbital overlap theories outlined by Jones ${ }^{5}$. Strict mathematical combination of these relationships with the Cotton and Kraihanzel secular equations in their exact formulation directly yields the values of force constants in perfect accordance with the spectroscopic data.

For some compounds listed in Tables 1 and 2 the carbonyl stretching force constants have already been evaluated using either the $\mathrm{C}-\mathrm{K}$ approximation method ($k_{t / 2}=k_{c}=k_{c^{\prime}}$), or the simplification ${ }^{7} k_{c}=k_{c^{\prime}}$.

The calculations were mainly carried out in double precision using an IBM 360 type 30 computer of the Computing Laboratory of the University of Ghent.

RESULTS AND DISCUSSION
The complete set of five CO stretching force constants for the compounds treated in this paper are calculated for the first time.

TABLE 1
OBSERVED CARBONYL STRETCHING MODES, ASSIGNMENTS AND FORCE CONSTANTS OF cis-L $\mathbf{L}_{2} \mathrm{M}(\mathrm{CO})_{4}$ COMPOUNDS (METHOD A)

No.	Compound	Ref.	Frequencies (cm^{-1})				Force constants (mdynes/ \AA)				
			$A_{1}(1)$	$A_{1}(2)$	B_{2}	B_{1}	k_{1}	k_{2}	$k_{\text {c }}$.	$k_{\text {c }}$	k_{t}
1	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} \mathrm{Cr}(\mathrm{CO})_{4}{ }^{a}$	6	2002	1906	1893	1874	14.62^{9}	15.142	0.3313_{4}	0.4394 ${ }^{\text {o }}$	0.6626_{7}
2	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}^{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {a }}\right.$	6	2015	1913	1899	1886	14.788	15.27,	0.3541_{8}	0.4161_{0}	0.70836
3	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {a }}$	6	2016	1917	1902	1888	$14.83{ }_{4}$	$15.31{ }_{1}$	0.3470_{5}	0.4311_{7}	0.6941 ${ }^{\circ}$
4	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {a }}$	6	2021	1924	1904	1892	$14.93{ }_{3}$	15.350	0.3512_{6}	0.4719_{1}	0.7025_{3}
5	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}\right]_{2} \mathrm{~W}(\mathrm{CO})_{4}{ }^{\text {a }}$	6	2012	1908	1889	1882	$14.74{ }_{0}$	15.157	0.36959	0.42925	0.7391_{8}
6	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{2} \mathrm{~W}(\mathrm{CO})_{4}{ }^{\text {a }}$	6	2016	1911	1894	1886	$14.78{ }_{8}$	$15.23{ }_{3}$	0.3696 。	0.4162_{6}	0.7392
7	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\right]_{2} \mathrm{~W}(\mathrm{CO})_{4}{ }^{\text {a }}$	6	2018	1918	1898	1890	14.878	$15.27{ }_{6}$	0.36012	0.4445_{1}	0.7202_{4}
8	$\left(\mathrm{PF}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {b }}$	7	2091	2022	2022	2003	$16.48{ }_{0}$	$16.97{ }_{8}$	$0.2293{ }_{4}$	0.26917	0.4586_{7}
9	$\left(\mathrm{CF}_{3} \mathrm{Pr}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {b }}$		2094	2036	2036	2013	16.65_{8}	17.13_{6}	0.19357	$0.2849{ }_{2}$	0.3871_{4}
		7	2094	2036	2013	2036	16.946	16.848	0.23769	0.19669	0.47538
10	$\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{PF}\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {b }}$		2093	2033	2033	2013	16.636	17.10_{0}	0.20005	0.2635_{0}	0.4001_{0}
		7	2093	2033	2013	2033	$16.88{ }_{2}$	16.85	0.2406,	0.1822_{3}	0.4813_{8}
11	$\left(\mathrm{CCl}_{3} \mathrm{PF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {c }}$		2079	2015	2010	1990	16.32_{6}	16.77_{1}	0.2235	0.3252_{2}	$0.4470{ }_{5}$
		7	2079	2015	1990	2010	$16.57{ }_{7}$	16.52_{0}	0.25950	0.25327	$0.5190{ }_{0}$
12	$\left(\mathrm{Et}_{2} \mathrm{NPF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {c }}$		2055	1974	1950	1942	$15.71{ }_{6}$	15.989	0.31247	0.4777_{8}	0.6249_{4}
		7	2055	1974	1942	1950	$\mathrm{1}^{15.82}{ }^{\text {o }}$	15.88_{s}	0.3233_{9}	0.4559_{s}	0.64677
13	$\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NPF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {c }}$		2053	1977	1952	1942	$15.73{ }_{8}$	15.99_{0}	0.2970_{8}	$0.5001{ }_{3}$	0.59417
		7	2053	1977	1942	1952	$\mathrm{15.87}_{4}$	15.85	$0^{0.3079}{ }_{7}$	0.4783.	0.6159
14	$\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {a }}$	8	2036	1946	1932	1923	15.314	15.72	0.3202_{4}	0.3729_{8}	0.6404^{9}
15	$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {d }}$	8	2010	1837	1915	1780	13.30_{6}	$15.48{ }_{3}$	0.3326_{2}	${ }^{0.5045}{ }_{6}$	0.6652
16	$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}{ }^{\text {e }}$	9	$\frac{2001}{2001}$	1901	1873	1866	14.59 s	14.91_{6}	0.3707_{3}	0.5266_{8}	0.7414_{6}
		9	$\begin{aligned} & 2001 \\ & 2003 \end{aligned}$	1901 1905	$\begin{aligned} & 1866 \\ & 1880 \end{aligned}$	1873	14.681	14.83 ${ }_{\text {I }}$	0.3809_{1} 0.3599	$0.5063{ }_{2}$ 0.5421	$0_{0.7618}$
18	$\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}{ }^{*}$	9	2008	1904	1893	1873	14.612	15.18	$0.3529{ }_{4}$	0.4369_{7}	0.70588
19	$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {e }}$	9	2016	1910	1896	1874	14.680	15.258	0.3667_{4}	0.4901_{1}	0.7334 \%
			2016	1910	1874	1896	$14.93{ }^{\text {9 }}$	14.99_{9}	0.40468	0.4142_{3}	0.8093_{5}
20	$\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {e }}$	9	2011	1912	1895	1878	$14.72{ }^{6}$	15.21 o	0.3500_{7}	0.4755_{6}	0.7001_{1}
			2011	1912	1878	1895	14.92,	15.000_{7}	0.3782	0.4191_{2}	0.7565_{g}
21	$\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{\text {a }}$	9	2016	1912	1898	1869	$14.65{ }_{4}$	15.27_{7}	0.3605_{5}	0.5404_{1}	0.7211_{0}
22	$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}{ }^{-}$	9	2008	1898	1880	1862	14.517	15.052	0.3854_{4}	0.50798	$0^{0.7708}$
			2008	1898	1862	1880	14.72_{8}	14.84_{0}	0.4158	0.4471_{6}	0.8317\%
23	$\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}{ }^{\text {e }}$	9	2008	1901	1883	1873	$14.61{ }^{\text {B }}$	15.079	0.3762°	0.4436_{8}	0.7524 ${ }^{\circ}$
			2008	1901	1873	1883	$14.73{ }_{4}$	14.96	0.39411_{1}	0.4078	0.7882_{2}
25	$\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}{ }^{\mathrm{e}}$	9	2012	1908	1887	1862	$14.59{ }_{7}$	15.13_{4}	0.3733_{2}	0.5883_{3}	0.7466_{4}
	$\left[\mathrm{EtN}\left(\mathrm{PF}_{2}\right)_{2}\right] \mathrm{Mo}(\mathrm{CO})_{4}^{f}$		2066	1991	1973	1963	$15.98{ }_{4}$	16.297	0.2842_{3}	0.4140_{6}	0.5684_{6}
		10	2066	1991	1963	1973	16.11_{2}	16.169	0.29967	$0.3831 \text { g }$	0.5993_{3}
26	$\left[\operatorname{EtN}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Mo}(\mathrm{CO})_{4}$		2023	1924	1907	1887	14.88 ,	$\mathrm{1F.39}_{8}$	0.3522_{2}	0.5014_{2}	0.7044_{3}
		11	2023	1924	1887	1907	15.131	$15.15{ }_{6}$	0.3844_{6}	0.4369_{3}	$0.7689{ }_{2}$
27	$(\mathrm{HgMe})_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{9}$	12	2048	1978	1989	1956	15.711_{5}	$16.38{ }^{5}$	$0.1997{ }^{\circ}$	$0.2566{ }_{4}$	$0^{0.3993}{ }_{9}$
28 29	$(\mathrm{HgBu})_{2} \mathrm{Fe}(\mathrm{CO})_{4}^{\mathrm{s}}$ $\left(\mathrm{PbEt}_{2}\right), \mathrm{Fe}(\mathrm{CO}) .{ }^{\theta}$	12	2042	1970	1983	1950	$15.60{ }_{2}$	16.28 9	$0.2001{ }_{5}$	0.2378	0.40029
29	$\left(\mathrm{PbEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{\text {g }}$	12	2040	1976	1985	1958	15.711_{1}	16.290	$0.1849{ }^{2}$	0.2204_{5}	0.36983
30	$\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{9}$	12	2057	1987	1998	1968	15.88	16.53_{1}	0.20059	0.23397	0.4011_{8}
31 32	${ }_{\left(\mathrm{SiCl}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{5}}$	12	2125	2078	2070	2061	17.411_{5}	17.669	0.1781_{9}	0.2518,	0.3563_{8}
32 33	$\left.\begin{array}{l}\left(\mathrm{SiEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{\text {g }} \\ (\mathrm{GeEt}\end{array}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{\mathrm{g}}$	12	2064	2000	2025	1989 1971	${ }_{16.114}^{15.93}$	16.85_{0}	${ }^{0.14067}$	$\mathrm{O}_{0.1294}{ }_{8}$	0.2813_{4}°
33 34	$\left(\mathrm{GeEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{\text {a }}$ ($\left.{ }^{\text {anMe}}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	12	2058	1990	1999	1971	$15.93{ }_{3}$	16.545	${ }^{0.19957}$	0.2364_{8}	0.39913
35	$\left(\mathrm{PbEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{9}$	12	2040	1976	1985	1958	$15.71{ }_{1}$	16.290	0.1849_{2}	0.2204_{5}	$0.3698{ }_{4}$

[^0]TABLE 2
OBSERVED CARBONYL STRETCHING MODES，ASSIGNMENTS AND FORCE CONSTANTS OF cis－L $\mathbf{L}_{\mathbf{2}} \mathrm{M}(C O)_{4}$ COMPOUNDS （MFTHOD B）
For references see Table 1.

No．	Compound	Frequencies（ cm^{-1} ）				Force constants（mdynes／\AA ）				
		$A_{1}(1)$	$A_{1}(2)$	B_{2}	B_{1}	k_{1}	k_{2}	$k_{\text {c }}$ 。	k_{c}	k_{t}
1	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} \mathrm{Cr}(\mathrm{CO})_{4}$	2002	1906	1893	1874	$14.76{ }_{5}$	$15.00{ }_{5}$	0.37596	0.5757_{2}	0.5263_{s}
2	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2015	1913	1899	1886	14．934	$15.13{ }^{3}$	0.4016_{4}	0.5621_{7}	0.5622
3	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2016	1917	1902	1888	$14.78{ }^{\circ}$	15.16 s	$0^{0.3913}{ }_{8}$	0.5773	0.5479_{3}
4	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2021	1924	1904	1892	$15.09{ }_{7}$	15．189	0.3865_{4}	0.63329	0.5411_{5}
5	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}\right]_{2} \mathrm{~W}(\mathrm{CO})_{4}$	2012	1908	1889	1882	$14.90{ }_{4}$	14.99_{4}	0．41139	0.5924_{8}	0.5759_{5}
6	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} \mathbf{W}(\mathrm{CO})_{4}$	2016	1911	1894	1886	$14.94{ }_{6}$	15.075	0.4151_{2}	0.5743 。	0.5811_{7}
7	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{~W}(\mathrm{CO})_{4}$	2018	1918	1898	1890	15．04，	15.112	0.3975	$0.6081{ }_{8}$	0.5565_{8}
8	$\left(\mathrm{PF}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2091	2022	2022	2003	16．559	16.89	0.2711_{7}	$0.3481{ }^{\text {g }}$	0.3796_{4}
9	$\left(\mathrm{CF}_{3} \mathrm{PF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2094	2036	2036	2013	16．72	17．069	$0.2288{ }^{\text {，}}$	$0^{0.3516} 3$	0.3204_{4}
10	$\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{PF}\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2093	2033	2033	2013	16.70_{5}	17.03_{1}	0.2365_{5}	0.3324	0.3311_{7}
		2093	2033	2013	2033	$17.03{ }_{3}$	16.70	$0^{0.2356} 8$	$0.3336{ }_{6}$	0.32995
11	$\left(\mathrm{CCl}_{3} \mathrm{PF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2079	2015	2010	1990	$16.41{ }_{1}$	$16.68{ }_{6}$	0.2585	0.4103_{2}	0.3619_{5}
12	$\left(\mathrm{Et}_{2} \mathrm{NPF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2055	1974	1942	1950	Negative y values				
13	$\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NPF}_{2}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2053	1977	1952	1942	Negative y values				
14	$\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2036	1946	1932	1923	15.450	15.586	0．36059	0.50877	0.5047_{0}
15	$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2010	1837	1915	1780	13．372	15.417	0.4281	0.5704_{5}	0.59936
16	$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$	2001	1801	1873	1866	Negative y values				
17	$\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$	2003	1905	1880	1866	Negative y values				
18	$\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$	2008	1904	1893	1873	14.75	15.045	$\mathrm{O}_{0.40474}$	0.5762_{2}	$0.5666{ }_{3}$
19	$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2016	1910	1896	1874	14．83 ${ }^{\text {o }}$	$15.10{ }_{8}$	0.41670	0.6402^{0}	$0.5833{ }_{9}$
20	$\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2011	1912	1895	1878	14.878	$15.05{ }_{3}$	0.3915_{1}	$0^{0.6275}$	0.5481
21	$\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$	2016	1912	1898	1869	$14.80{ }_{3}$	15.12	0.4092_{8}	0.6885_{1}	$0^{0.5729} 9$
22	$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}$	2008	1898	1880	1862	14.688_{2}	$14.88{ }_{6}$	0.4326_{5}	0.67315	0．6057
23	$\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}$	2008	1901	1883	1873	14．78	$14.91{ }_{6}$	0.4214_{4}	0.60607	0.5900_{1}
24	$\left(\mathrm{AsMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}$	2012	1908	1887	1862	14.76	14．96	0．4117，	0．7584。	0.5765
25	$\left[\mathrm{EtN}\left(\mathrm{PF}_{2}\right)_{2}\right] \mathrm{Mo}(\mathrm{CO})_{4}$	2066	1991	1963	1973	Negative y values				
26	$\left[\mathrm{EtN}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Mo}(\mathrm{CO})_{4}$	2023	1924	1907	1887	15.042	15.24 s	0.39390	$0.6543{ }^{\text {g }}$	0.5514_{6}
27	$(\mathrm{HgMe})_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2048	1978	1989	1956	$15.77=$	16.32.	0.2445_{1}	0.31373	0.3423_{1}
28	$(\mathrm{HgBu})_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2042	1970	1983	1950	${ }^{15.65} 7$	$16.23{ }_{3}$	0.24616	0.2935_{1}	0.3446
29	$\left(\mathrm{PbEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2040	1976	1985	1958	15.76	$16.23{ }_{6}$	0.2256	0.2743	0.3159
30	$\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2057	1987	1998	1968	15.94 o	$16.47{ }_{3}$	0．2456。	0.2913_{1}	$0.3438{ }_{3}$
31	$\left(\mathrm{SiCl}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2125	2078	2070	2061	17.49_{2}	17.59	0.19916	0.32944	$0.2788{ }_{3}$
32	$\left(\mathrm{SiEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2064	2000	2025	1989	16.14	$16.82{ }^{0}$	0.1795_{0}	0.1595_{2}	0.2512_{9}
33	$\left(\mathrm{GeEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2058	1990	1999	1971	15.99_{2}	16.488_{6}	0.24314	0.2952_{1}	0.3404_{0}
34	$\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2057	1987	1998	1963	15.90_{0}	16.473	0．2456	0.3310_{2}	0.3438
35	$\left(\mathrm{PbEt}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2040	1976	1985	1958	15.76	16.236	0.2256_{8}	0.2743_{3}	0.3159

Again two methods of evaluation were tried，namely A and B．Both these methods were already outlined in a previous paper ${ }^{2}$ ．The values listed in Table 1 are found using method A，whereas the physically acceptable force constants resulting from method B are presented in Table 2．All corresponding y values are positive ${ }^{2}$ ．

For some of the compounds of Table 1 （compds．12，16，19，20，22，23，25，26）there are two assignments which result in sets of force constants to both of which the se－ quence $k_{1}<k_{2}$ applies．Since a rigorous assignment should be based upon arguments other than band positions and intensities only，a choice between the two assignments
could not be made and therefore both of them are presented.
For other complexes of Table 1 (compds, $9,10,11,13$) there are also two possible assignments, but one of them results in $k_{1}<k_{2}$, the other in $k_{1}>k_{2}$.

As Cotton and Kraihanzel developed their secular equations on the explicit assumption that the substituent ligands in metal carbonyl complexes have poorer π-acceptor properties than CO, resulting in the criterion $k_{1}<k_{2}$, and since the calculations presented in this series of papers are mainly based on the CK force field, the assignment resulting in the sequence $k_{1}<k_{2}$ for the radial and axial CO stretching force constants is preferred.

However, inspection of some fluorophosphine carbonyl complexes of Table 1 indicates that for one of the assignments listed, k_{1} and k_{2} are of similar magnitude. Since it is well known that some fluorophosphine compounds $\left[\mathrm{CF}_{3} \mathrm{PF}_{2},\left(\mathrm{CF}_{3}\right)_{2} \mathrm{PF}\right.$, PF_{3}] are strong π-acceptor ligands with acceptor characteristics similar to those of CO , the spectra could also agree with $k_{1} \leqslant k_{2}$ or even $k_{1} \geqslant k_{2}$ for these complexes.

It is also very important to stress that the magnitude of k_{1} and k_{2} depends strongly on the relative frequencies of the B_{1} and B_{2} modes. Only an exact assignment of these frequencies could allow conclusions about $k_{1}>k_{2}$ or $k_{1}<k_{2}$.

The force constants for some compounds presented in Table 2 (compds. 12. $13,16,17,25$) yield negative y values. Since y is a factor related to the change in π overlap integral occurring on the substitution of a CO group by a ligand in a metal carbonyl, it cannot be negative ${ }^{1,2,3}$.

It is also important to note that to the interaction force constants obtained by method B , the sequence $k_{c}<k_{t}<k_{c}$ applies whereas method A results into a pattern of force constants given by the general sequence ${ }^{1-3} k_{c^{\prime}}<k_{c}<k_{t^{\prime}}$, which has also been found for other metal carbonyl substitution products by Kaesz et al. ${ }^{13}$ using isotopic substitution methods. For these two reasons we must conclude that the inclusion of angular correction terms in the calculation of interaction force constants ${ }^{14}$ does not improve the results.

ACKNOWLEDGEMENT

The authors wish to thank Prof. Dr. C. C. Grosjean for the computing facilities of his institute and Miss. R. M. de Caluwe for the computer program.
REFERENCES

[^1]
[^0]: ${ }^{a}$ In cyclohexane. ${ }^{b}$ Vapour. ${ }^{6}$ In hexane. ${ }^{d}$ In nujol mull. ${ }^{*}$ In $\mathrm{CHCl}_{3} .{ }^{5}$ In $\mathrm{CCl}_{4} .{ }^{a}$ In n-hexadecane.

[^1]: 1 F. T. Delbeke, E. G. Claeys, R. M. de Caluwe and G. P. van der Kelen, J. Organometal. Chem., 23 (1970) 505.
 2 F. T. Delbeke, E. G. Claeys, G. P. van der Kelen and R. M. de Caluwe, ibid., 23 (1970) 497.
 3 F. T. Delbeke, E. G. Claeys, G. P. van der Kelen and Z. Eeckhaut, ibid., 24 (1970) 435.
 4 F. A. Cotton and C. S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
 5 L. H. Jones, in S. Kirschner (Ed.), Advanc. Chemistry of the Coordination Compounds, 1961, p. 398.
 6 S. O. Grim and D. A. Wheatland, Inorg. Chem., 8 (1969) 1716.
 7 C. G. Barlow, J. F. Nixon and M. Webster, J. Chem. Soc. A, (1968) 2216.
 8 C. G. Barlow and G. C. Holywell, J. Organometal. Chem., 16 (1969) 439.
 9 J. M. Jenkins, J. R. Moss and B. L. Shaw, J. Chem. Soc. A, (1969) 2796.
 10 T. R. Johnson and J. F. Nixon, J. Chem. Soc. A, (1969) 2518.
 11 D. S. Payne and A. P. Walker, J. Chem. Soc. C, (1966) 498.
 12 O. Kahn and M. Bigorgne, C. R. Acad. Sci., Ser. C, 261 (1965) 2483.
 13 H. D. Kaesz, R. Bau, D. Hendrickson and J. M. Smith, J. Amer. Chem. Soc., 89 (1967) 2844.
 14 E. W. Abel, J. Dalton, I. Paul, J. G. Smith and F. G. A. Stone, J. Chem. Soc. A, (I968) 1203.
 J. Organometal. Chem., 25 (1970) 219-222

